giovedì 19 dicembre 2019

El Niño al tempo della Piccola Età Glaciale


In un articolo di 7 anni fa, Hereid et al.(2013) affermano che ENSO (El Niño Southern Oscillation) fornisce energia alla variabilità climatica globale attraverso cambiamenti nella forza degli alisei, nella temperatura e salinità, livello marino e configurazioni della circolazione atmosferica, e che la sua variabilità è ben caratterizzata nei record strumentali (moderni). Questi record, però, secondo gli autori, non sono in grado di descrivere completamente la variabilità (la definiscono “naturale”) di ENSO causata dalla forzante antropica.

Inoltre, la variabilità solare può interagire con ENSO anche se la sua risposta al Sole è difficile da prevedere.

Allo scopo di analizzare il comportamento di ENSO rispetto al Sole, gli autori hanno prodotto alcune serie ricavate da carote di coralli nella zona nord-orientale di Papua Nuova Guinea e di queste rendono disponibili i dati dai coralli dell’isola di Misima tra il 1412 e il 1643 dell’Era Comune (CE), in piena Piccola Era Glaciale (PEG, 1350-1850), un periodo di minore influenza solare. Gli autori scrivono che durante il periodo 1560-1660 si osserva una variabilità ridotta di ENSO, anche se non è chiara la relazione tra attività solare e variabilità ENSO; questo sottintende che la variabilità deriva dalle dinamiche interne. Il lavoro, in qualche modo, si lega ad uno studio di ElNiño non strumentale di qualche anno prima, D’Arrigo et al. (2005), a cui anche io farò riferimento più avanti.

Come ho detto, le carote di Misima hanno dato origine ad una serie di δ18O a passo mensile (per facilità di scrittura li indico spesso con d180 nei grafici). Il δ18O, essendo un dato che riflette all’inverso le variazioni di temperatura, qui viene usato come un proxy di El Niño (le deviazioni positive dalla media) e di La Niña (le deviazioni negative). Lo mostro in figura 1 insieme al suo spettro MEM.


Fig.1: Serie di δ18O da Misima, da Hereid et al., 2013. 
Notale il break-point, attorno al 1550, seguito da un aumento dei valori di δ18O. 
La scale verticale è rovesciata rispetto a quella di figura 2 di Hereid et al.

Questa serie mostra una prima fase, fino a circa il 1550, con ampie oscillazioni ma sostanzialmente a media costante; una diminuzione per i successivi dieci anni, fino a circa il 1560, e poi un aumento fino al 1630 seguito da un’apparente ripresa di oscillazioni più ampie. Sostanzialmente si osserva (tramite il filtro su 10 anni, linea gialla) una diminuzione della variabilità nel periodo di aumento della temperatura (ovvero del δ18O) e questo conferma quanto affermano Hereid et al. (2012) che identificano il periodo di quiescenza di ENSO tra il 1520 e il 1630 (v. la loro figura 2, quadro inferiore, disponibile nel sito di supporto).
 
 

Lo Spettro

 
Lo spettro è caratterizzato dai periodi tipici di ENSO e cioè dal gruppo 2-8 anni, dai periodi 9-26 anni e da un potente massimo a 93 anni. Entrambi i lavori citati, e in particolare D’Arrigo et al. (2005), si concentrano sui periodi 2-8 anni trascurando, ad esempio, il massimo a 9.8 anni che pure vedono sia nei dati osservati nella regione Niño3 del Pacifico sia nella loro stessa ricostruzione di El Niño per il periodo 1408-1858; non ne parlano semplicemente perché la potenza di questo picco spettrale cade sotto il livello di confidenza del 90%. Allo stesso tempo, in figura 1 si osserva che il periodo 9.7 anni è il quarto massimo dello spettro per potenza e quindi tutt’altro che trascurabile.
La considerazione precedente pone un problema: praticamente tutti i gruppi che calcolano gli spettri fissano dei limiti di “veridicità” sui periodi, limiti calcolati con un livello di confidenza derivato da simulazioni Monte Carlo: se i picchi spettrali hanno potenza inferiore ad un dato livello vengono considerati fluttuazioni statistiche e quindi non reali. Questo assunto è probabilmente vero nel caso del calcolo di un solo spettro ogni tanto, ma avendo io calcolato ormai centinaia di spettri di serie molto diverse e avendo notato che gli stessi periodi si ripetono in quasi tutte le serie con notevole precisione, anche se con possibili, forti, differenze di potenza, non sono più disposto ad accettare la regola del livello di confidenza; preferisco usare quella che in altre occasioni ho chiamato la regola della probabilità frequentista e cioè l’accettazione di un periodo, indipendentemente dalla sua potenza, che sia confermato dallo spettro di serie indipendenti, anche se simili.
Non vengono presi in considerazione neanche i massimi tra 12 e 26 anni che nella figura 2c di D’Arrigo sono quasi tutti sotto la soglia del 50% o appena sopra. La stessa cosa per il massimo a 93 anni che esiste come un debole picco, ben al di sotto del 50%, e che non viene mai nominato, mentre in figura 1 è il massimo principale e ricorda il ciclo solare di Gleissberg (88 anni) o anche una ciclicità senza nome, a 104 anni.

L’analisi spettrale di figura 1 viene confermata anche dallo spettro wavelet di δ18O mostrato nella successiva figura 2.


Lo spettro wavelet mostra anche l’esistenza, costante su tutta la lunghezza della serie, del massimo a 93 anni -il più potente- che però appare fuori dal cono di influenza, l’area al cui interno i massimi sono considerati attendibili. Si può localizzare appena sotto la potenza “10”, cioè sotto il valore (2^10)/12=1024/12 mesi=85.3 anni. Si osserva anche la fascia di periodo 1 anno che in figura 1 è identificata dalla sigla 1 (18).

 
Spettro wavelet di δ18O 1412-1643. All’immagine sono stati aggiunti i periodi in anni (asse verticale) e l’anno corrispondente al numero d’ordine dell’asse orizzontale. Qui Hereid et al. viene indicato come 2012, mentre in bibliografia è 2013: la differenza dipende dall’uso della copia pubblicata in rete oppure della copia stampata.

Lo spettro wavelet mostra anche l’esistenza, costante su tutta la lunghezza della serie, del massimo a 93 anni -il più potente- che però appare fuori dal cono di influenza, l’area al cui interno i massimi sono considerati attendibili. Si può localizzare appena sotto la potenza “10”, cioè sotto il valore (2^10)/12=1024/12 mesi=85.3 anni. Si osserva anche la fascia di periodo 1 anno che in figura 1 è identificata dalla sigla 1 (18).
 
 

Analisi del δ18O e di ENSO


Se si vuole analizzare la serie dell’ossigeno, è necessario costruire la corrispondente serie detrended, in particolare del periodo 1560-1643 che mostra una pendenza 50 volte maggiore di quella della prima parte dei dati. L’operazione si vede in figura 3 dove il grafico superiore mostra la scelta delle due parti in cui la serie è stata divisa e i fit lineari da cui è stato calcolato il detrended; il grafico inferiore mostra la serie completa detrended con i due limiti (±0.2 permille) al di là dei quali sono stati selezionati gli eventi El Niño (positivi) e La Niña (negativi).


Fig.3: In alto le due parti in cui è stata divisa la serie dell’ossigeno e i rispettivi fit lineari. In basso la serie da cui è stata sottratta la pendenza (il detrended).

Fig.4: Eventi positivi e negativi per cui il valore assoluto di δ18O supera il ±0.2 permille. Questi ed altri dati sono disponibili in forma di istogramma nelle ultime tre figure del post.

Ho calcolato per le due serie di figura 4 gli spettri MEM che confronto in figura 5: 
 
 
Fig.5: Spettri MEM delle due serie che rappresentano El Niño (rosso) e la Niña (blu).
 
Gli spettri mostrano che El Niño e La Niña sono eventi che rispondono a stimoli esterni diversi, anche se a volte -ad esempio per 93, 9.8, 6.4, 4.6 anni- presentano le stesse ciclicità. I periodi di 34.4, 12.1, 10.8, 7.3, 4.2, 3.8 anni sembrano essere di competenza esclusiva di El Niño, mentre 46.4, 8.8, 7.7, 3.5 anni sarebbero appannaggio di La Niña.
 
È difficile attribuire i massimi spettrali ad una causa certa: oltre al già ricordato picco a 93 anni e al gruppo 2-8 anni, troviamo massimi tra 10 e 25 anni forse -ma con più di un’incertezza- legati ai cicli solari di Schwabe e di Hale; un massimo a 46.4 anni (solo La Niña) ricorda molto il ciclo sinodico Saturno-Urano (45.3 anni) mentre quello a 34.4 anni (solo El Niño) è simile ai 35.8 anni del ciclo sinodico Saturno-Nettuno. Il picco a 9.8 anni, comune ad entrambi gli eventi, ha durata pari alla metà del ciclo sinodico Giove-Saturno (9.93 anni).

Ma non farei troppo affidamento su queste similitudini e mi limiterei al solo elenco dei massimi osservati e all’elenco dei cicli e dei massimi solari di tabella 1 a causa della natura dei dati di prossimità e delle incertezze ad essi associate..

Tabella 1: Cicli e minimi solari
Cycle of Period
Hallstatt 2200 yrs
Eddy 1000 yrs
no-name 506 yrs
de Vries o Suess 208 yrs
no-name 150 yrs
no-name 104 yrs
Gleissberg 88 yrs
Hale 22 yrs
Schwabe 11 yrs
Minimum of Year (length)
G (no name) 1880-1930 (50)
Dalton 1790-1810 (20)
Maunder 1645-1715 (70)
Spörer 1460-1550 (90)
Wolf 1280-1350 (70)
Oort 1010-1050 (40)
RWP -250,400 (650)
MWP   950-1250 (300)
LIA 1350-1850 (500)


Confronto con gli indici moderni


Ci possiamo chiedere se gli eventi ENSO hanno avuto una evoluzione nel tempo e se mostrano differenze tra il periodo della PEG e i tempi moderni con dati strumentali.

Per capire meglio mettiamo a confronto gli istogrammi di frequenza (numero di aventi per anno) sia di El Niño che di La Niña sui periodi 1411-1643, 1874-2018 e 1950-2018 ricavati, gli ultimi due dagli indici SOI (Southern Oscillation Index) di NOAA e del BOM (Bureau Of Meteorology australiano) e il primo dal δ18O dell’isola di Misita di figura 3, assumendo, che si possano considerare eventi Niño i valori dell’indice rispettivamete inferiori a -0.5, -7 e -0.2‰ e Niña quelli superiori a +0.5, +7 e +0.2‰.

Dalle tre figure che seguono non sembra di poter osservare una evoluzione significatica. Si notano periodi di ridotta variabilità di El Niño, sia in figura 7 (tra il 1925 e il 1960, interrotta da un forte evento nel 1940) che in figura 8 (tra il 1952 e il 1964; una parte dello stesso evento precedente), durante un periodo di ridotta attività solare tra il 1880 e il 1940.


Fig.6: Eventi caldi (El Niño, rosso) e freddi (La Niña, blu) estratti dalla serie δ18O di Misita. Le linee di colore contrastante sono i fit lineari delle due serie.


Fig.7: Eventi caldi (El Niño, rosso) e freddi (La Niña, blu) estratti dalla serie SOI di BOM (Soibom). Le linee di colore contrastante sono i fit lineari delle due serie.


Fig.8: Eventi caldi (El Niño, rosso) e freddi (La Niña, blu) estratti dalla serie SOI di NOAA. Le linee di colore contrastante sono i fit lineari delle due serie.

 NOAA. Le linee di colore contrastante sono i fit lineari delle due serie.
 
Nelle due figure dell’indice SOI (7 e 8) spicca per la sua larghezza un evento El Niño tra il 1990 e il 1995, argomento del lavoro di Allan e D’Arrigo (1999) che definiscono la sequenza di El Niño “persistente” e si chiedono quanto sia inusuale questa situazione.
 
I dati di questo post sono disponibili nel sito di supporto.


Bibliografia




Fonte: ClimateMonitor


Nessun commento:

Posta un commento

Nota. Solo i membri di questo blog possono postare un commento.